Abstract

Elliptic curves over \mathbb{Q} that admit a cyclic isogeny of degree n are parameterizable. In this project, we consider the family of parameterized elliptic curves corresponding to an isogeny class degree of 4 . We classify their minimal discriminants and give necessary and sufficient conditions
for determining the primes at which additive reduction occurs. for determining the primes at which additive reduction occurs.

Elliptic Curves

Let \mathbb{Q} be the field of rational numbers. We define an elliptic curve © Q as a curve given by an (affine) Weierstrass model

$$
E: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}
$$

where $a_{i} \in \mathbb{Q}$ and every point on the curve has a unique tangent. We also include a point at infinity \mathcal{O}. If each $a_{i} \in \mathbb{Z}$, then we say that E given by an integral Weierstrass model.
The signature of an elliptic curve E is $\operatorname{Sig}(E)=\left(c_{4}, c_{6}, \Delta\right)$ where
$a_{1}=a^{2}+8 a^{2}-2 a^{2}$
$c_{4}=a_{1}^{4}+8 a_{1}^{2} a_{2}-24 a_{1} a_{3}+16 a_{2}^{2}-48 a_{4}$
$c_{6}=-\left(a_{1}^{2}+4 a_{2}\right)^{3}+36\left(a_{1}^{2}+4 a_{2}\right)\left(2 a_{4}+a_{1} a_{3}\right)-216\left(a_{2}^{3}+4 a_{6}\right)$ $\Delta=\frac{c_{4}^{3}-c_{6}^{2}}{1728}$

Kraus's Theorem, 1989
Let $\alpha, \beta, \gamma \in \mathbb{Z}$ with $\alpha^{3}-\beta^{2}=1728 \gamma \neq 0$. Then there exists some integral Weierstrass model E with $\operatorname{Sig}(E)=(\alpha, \beta, \gamma)$ if and only if (- $v_{3}(\beta) \neq 2$ (2 either $\beta \equiv-1 \bmod 4$ or both $v_{2}(\alpha) \geq 4$ and $\beta \equiv 0,8 \bmod 32$.

Isomorphisms

Let E_{1} and E_{2} be elliptic curves over \mathbb{Q}. We say that E_{1} and E_{2} are \mathbb{Q}-isomorphic, denoted $E_{1} \cong_{\mathbb{Q}} E_{2}$, if and only if there exist Q,

$$
E_{1} \longrightarrow E_{2} \text { where }(x, y) \longmapsto\left(u^{2} x+r, u^{3} y+u^{2} s x+w\right) \text {. }
$$

We define the \mathbb{Q}-isomorphism class of E_{1}, denoted $\left[E_{1}\right] \mathbb{Q}$, to be the Set of all elliptic curves that are \mathbb{Q}-isomorphic to E_{1} Denote $\operatorname{Sig}\left(E_{1}\right)=\left(c_{4}, c_{6}, \Delta\right)$ and $\operatorname{Sig}\left(E_{2}\right)=\left(c_{4}^{\prime}, c_{6}^{\prime}, \Delta^{\prime}\right)$. If $E_{1} \cong \cong_{\mathbb{Q}} E_{2}$ hen we have the following relationship

$$
c_{4}^{\prime}=u^{-4} c_{4}, c_{6}^{\prime}=u^{-6} c_{6}, \Delta^{\prime}=u^{-12} \Delta
$$

Minimal Discriminants and Global Minimal Models

- Let E / \mathbb{Q} be an elliptic curve. The minimal discriminant of E, denoted $\Delta_{E}^{m i n}$, is the discriminant of an integral Weierstrass model that is Q-isomorphic to E and satisfies:
$\left|\Delta_{E}^{\min }\right|=\min \left\{\left|\Delta_{E / \mathbb{Q}}\right|: F \cong_{\mathbb{Q}} E\right.$ and F is an integral model $\}$
We say that E is given by a global minimal model if it is given by an integral model with discriminant $\Delta_{E}^{\text {min }}$
E. The minimal sic curve and let F be a global minimal model for . The minimal signature of E is

$$
\operatorname{Sig}_{\text {min }}(E)=\operatorname{Sig}(F)=\left(c_{4}, c_{6}, \Delta_{E}^{\min }\right) .
$$

We say that E has additive reduction at p if $p \mid \operatorname{gcd}\left(c_{4}, \Delta_{E}^{\text {min }}\right)$. Simiarly, we say that E has semistable reduction at p if E does

Isogenies

- We say that $\pi: E_{1} \rightarrow E_{2}$ is an isogeny if π is a surjective group degree of the isooeny to be \# ker τ. We say that an isogeny τ is cyclic if ker $\pi \cong \mathbb{Z} / n \mathbb{Z}$, and we say that π is an n-isogeny. - Consider two elliptic curves over \mathbb{Q}, i.e. $E_{1}: y^{2}=x^{3}+A_{1} x+B_{1}$ and $E_{2}: y^{2}=x^{3}+A_{2} x+B_{2}$. It turns out that all cyclic isogenies $\pi: E_{1} \rightarrow E_{2}$ are of the form

$$
\pi(x, y)=\left(f(x), c \frac{d}{d x} f(x)\right)
$$

where $f(x) \in \mathbb{Q}(x)$ and $c \in \mathbb{Q} \backslash\{0\}$

- The isogeny class of E is the set

Iso $(E)=\left\{[F]_{\mathbb{Q}}: F\right.$ is isogenous to $\left.E\right\}$
The isogeny class (over \mathbb{Q}) of an elliptic curve E defined over \mathbb{Q} is the set of all isomorphism classes of elliptic curves defined over \mathbb{Q}. The isogeny class degree is the largest n-isogeny that occurs between elements of the set.
The isogeny graph of E is the graph whose vertices are elements of Iso (E), and the edges of the graph correspond to isogenies of prime degrees between representatives of vertices.

- At a given prime, isogenous elliptic curves have the same reduction

Families of Elliptic Curves
Theorem (Barrios, 2023)
Let E / \mathbb{Q} be an elliptic curve that has isogeny class degree equal to 4 .
Then there are $a, b, d \in \mathbb{Z}$ with $g c d(a, b)=1$ and d is squarefree such
that the isogeny class of E is $\left\{F_{4, i}(a, b, d) \text {) } \mathbb{Q}\right\}_{i=1}^{4}$. Moreover, the isogeny
graph of E is given in the figure below.

$$
F_{4,2}(a, b, d)
$$

$F_{4,1}(a, b, d$

$F_{4,3}(a, b, d)$
$F_{4,4}(a, b, d)$
Figure: Sogeny graph of degree 4
$F_{4,1}(a, b, d): y^{2}=x^{3}+(a d-16 b d) x^{2}-16 a b d^{2} x$
$F_{4,2}(a, b, d): y^{2}=x^{3}+(a d+8 b d) x^{2}+16 b^{2} d^{2} x$
$F_{4,3}(a, b, d): y^{2}=x^{3}+(32 b d-2 a d) x^{2}+a^{2} d^{2}+32 a b d^{2}+256 b^{2} d^{2} x$
$F_{4,4}(a, b, d): y^{2}=x^{3}-(2 a d+64 b d) x^{2}+a^{2} d^{2} x$

Example

$F_{4,1}(16,-17,-5): y^{2}=x^{3}-1440 x^{2}+108800 x$ $F_{4,2}(16,-17,-5): y^{2}=x^{3}+600 x^{2}+115600 x$. $F_{4,3}(16,-17,-5): y^{2}=x^{3}+2880 x^{2}+1638400 x$
$F_{4,4}(16,-17,-5): y^{2}=x^{3}-5280 x^{2}+6400 x$

Figure: $F_{4,3}(16,-17,-5)$
Example
Consider $F_{4, i}(a, b, d)$ where $(a, b, d)=(16,-17,-5)$, then $F_{4,1}(16,-17,-5): y^{2}=x^{3}-1440 x^{2}+108800$ $\operatorname{Sig}(E)=\left(2^{12} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 13,2^{18} \cdot 3^{4} \cdot 5^{4} \cdot 11,2^{36} \cdot 5^{6} \cdot 17^{2}\right)$
Then
$v_{2}(a)=4, v_{2}(a+16 b)=v_{2}(16+16(-17))=v_{2}(16(1+(-17))=8$
and
$b d \equiv 17 \cdot 4 \bmod 4 \equiv 1 \quad \bmod 4$
By table, we have $\left(u_{1}, u_{2}, u_{3}, u_{4}\right)=(8,4,16,8)$. As a consequence, we
have that
$\Delta_{1}^{\text {min }}=8^{-12}\left(2^{36} \cdot 5^{6} \cdot 17^{2}\right)=5^{6} \cdot 17^{2}$
$\Delta_{2}^{\text {min }}=4^{-12}\left(-1 \cdot 2^{24} \cdot 5^{6} \cdot 17^{4}\right)=-1 \cdot 5^{6} \cdot 17^{4}$
$\Delta_{3}^{\min }=16^{-12}\left(2^{48} \cdot 5^{6} \cdot 17\right)=5^{6} \cdot 17$
$\Delta_{4}^{\min }=8^{-12}\left(2^{36} \cdot 5^{6} \cdot 17\right)=5^{6} \cdot 17$

Theorem 2 (A., B., N., 2023)
Let $a, b, d \in \mathbb{Z}$ with $\operatorname{gcd}(a, b)=1$ and d squarefree. If $F_{4}(a, b, d)$ is a elliptic curve, then $F_{4, i}$ has additive reduction at a prime p if and only i p is listed in the table below and the corresponding conditions on a, b, d re satisfie

\[

\]

Corollary

Let $a, b, d \in \mathbb{Z}$ with $\operatorname{gcd}(a, b)=1$ and d squarefree. If $F_{n ;}(a, b, d)$ is a eliiptic curve, then $F_{n, i}$ is semistable if and only if $|d|=1$ and either (i $v_{2}(a) \geq 8$ with $b d \equiv 3 \bmod 4$, (ii) $v_{2}(a)=8$ with $v_{2}(a+16 b) \geq 8$ and $b d \equiv 1 \bmod 4$, or (iii) $a \equiv 1 \bmod 4$.

Example

Let $E=F_{4,1}(16,-17,-5)$. From the table above, we can determine Let $E=F_{4,1}(16,-17,-5)$. From the table above, we can determine that E
primes.

Future Work

This project focused on elliptic curves with isogeny class degree equal to 4 , and ongoing work aims to determine the minimal discriminants and primes of additive reduction for elliptic curves with isogeny class degree $n>1$.

References

1] A.J. Barrios. Minimal models of rational elliptic curves with nontrival torsion, Res. Number Theory 8 (2022), no. 1, Paper No. 4., 39 pp. [2] A.J. Barrios. Erplicit classification of isogeny graphs of rational elliptic 2] A.J. Barrios. Explicit classification of isogeny graphs of rational elliptic A. 3] A. Kraus. Quelques remarques à propos des invariants c_{4}, c_{6} et Δ que, Acta Arith.54(1989), no.1, 75-80
(4) J. H. Silverman. The Arithmetic of Elliptic Curves, Graduate Texts in Tathematics, Volume 106. Second Edition (2009).

Acknowledgements

- Dr. Alex Barrios (University of St. Thomas)
- Fabian Ramirez (University of California Irvine
- Dr. Edray Herber Goins (Pomona College), and our fellow PRiME
participants.
Department of Mathematics, Pomona College
Research at PRiME was supported by the National Science Foundation award DMS-2113782. Any opinions, findings, and conclusions or do not necessarily reflect the views of the National Science Foundation.

