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Abstract

Elliptic curves over Q that admit a cyclic isogeny of degree n are pa-
rameterizable. In this project, we consider the family of parameterized
elliptic curves corresponding to an isogeny class degree of 4. We classify
their minimal discriminants and give necessary and sufficient conditions
for determining the primes at which additive reduction occurs.

Elliptic Curves

• Let Q be the field of rational numbers. We define an elliptic curve
E/Q as a curve given by an (affine) Weierstrass model

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6

where ai ∈ Q and every point on the curve has a unique tangent. We
also include a point at infinity O. If each ai ∈ Z, then we say that E is
given by an integral Weierstrass model.

• The signature of an elliptic curve E is Sig(E) = (c4, c6, ∆) where
c4, c6, and ∆ are the invariants of E defined to be

c4 = a4
1 + 8a2

1a2 − 24a1a3 + 16a2
2 − 48a4

c6 = −
a2

1 + 4a2
3 + 36

a2
1 + 4a2

 (2a4 + a1a3) − 216
a3

2 + 4a6


∆ = c3
4 − c2

6
1728

.

Kraus’s Theorem, 1989

Let α, β, γ ∈ Z with α3 − β2 = 1728γ ̸= 0. Then there exists some
integral Weierstrass model E with Sig(E) = (α, β, γ) if and only if

1 v3(β) ̸= 2
2 either β ≡ −1 mod 4 or both v2(α) ≥ 4 and β ≡ 0, 8 mod 32.

Isomorphisms

• Let E1 and E2 be elliptic curves over Q. We say that E1 and E2 are
Q-isomorphic, denoted E1 ∼=Q E2, if and only if there exist
u, r, s, w ∈ Q, u ̸= 0 such that we have a map

E1 −→ E2 where (x, y) 7−→ (u2x + r, u3y + u2sx + w).
• We define the Q-isomorphism class of E1, denoted [E1]Q, to be the

set of all elliptic curves that are Q-isomorphic to E1.
• Denote Sig(E1) = (c4, c6, ∆) and Sig(E2) = (c′

4, c′
6, ∆′). If E1 ∼=Q E2,

then we have the following relationship
c′
4 = u−4c4, c′

6 = u−6c6, ∆′ = u−12∆

Minimal Discriminants and Global Minimal Models

• Let E/Q be an elliptic curve. The minimal discriminant of E,
denoted ∆min

E , is the discriminant of an integral Weierstrass model that
is Q-isomorphic to E and satisfies:

|∆min
E | = min{|∆E/Q| : F ∼=Q E and F is an integral model}.

We say that E is given by a global minimal model if it is given by
an integral model with discriminant ∆min

E .
• Let E/Q be an elliptic curve and let F be a global minimal model for

E. The minimal signature of E is
Sigmin(E) = Sig(F ) =

c4, c6, ∆min
E

 .

• We say that E has additive reduction at p if p | gcd(c4, ∆min
E ).

Similarly, we say that E has semistable reduction at p if E does
not have additive reduction at p.

Isogenies

• We say that π : E1 → E2 is an isogeny if π is a surjective group
homomorphism π : E1 → E2. The ker π is finite and we define the
degree of the isogeny to be # ker π. We say that an isogeny π is
cyclic if ker π ∼= Z/nZ, and we say that π is an n-isogeny.

• Consider two elliptic curves over Q, i.e. E1 : y2 = x3 + A1x + B1 and
E2 : y2 = x3 + A2x + B2. It turns out that all cyclic isogenies
π : E1 → E2 are of the form

π(x, y) =
f (x), c

d

dx
f (x)



where f (x) ∈ Q(x) and c ∈ Q \ {0}
• The isogeny class of E is the set

Iso(E) = {[F ]Q : F is isogenous to E}
The isogeny class (over Q) of an elliptic curve E defined over Q is the
set of all isomorphism classes of elliptic curves defined over Q. The
isogeny class degree is the largest n-isogeny that occurs between
elements of the set.

• The isogeny graph of E is the graph whose vertices are elements of
Iso(E), and the edges of the graph correspond to isogenies of prime
degrees between representatives of vertices.

• At a given prime, isogenous elliptic curves have the same reduction
types.

Families of Elliptic Curves

Theorem (Barrios, 2023)

Let E/Q be an elliptic curve that has isogeny class degree equal to 4.
Then there are a, b, d ∈ Z with gcd(a, b) = 1 and d is squarefree such
that the isogeny class of E is {[F4,i(a, b, d)]Q}4

i=1. Moreover, the isogeny
graph of E is given in the figure below.

Figure: Isogeny graph of degree 4

F4,1(a, b, d) : y2 = x3 + (ad − 16bd)x2 − 16abd2x

F4,2(a, b, d) : y2 = x3 + (ad + 8bd)x2 + 16b2d2x

F4,3(a, b, d) : y2 = x3 + (32bd − 2ad)x2 + a2d2 + 32abd2 + 256b2d2x

F4,4(a, b, d) : y2 = x3 − (2ad + 64bd)x2 + a2d2x

Example

F4,1(16, −17, −5) : y2 = x3 − 1440x2 + 108800x,

F4,2(16, −17, −5) : y2 = x3 + 600x2 + 115600x.

F4,3(16, −17, −5) : y2 = x3 + 2880x2 + 1638400x,

F4,4(16, −17, −5) : y2 = x3 − 5280x2 + 6400x

Theorem 1 (A., B., N., 2023)

Let a, b, d ∈ Z with gcd(a, b) = 1 and d squarefree. If F4,i(a, b, d) is an
elliptic curve with discriminant ∆4,i, then the minimal discriminant of
F4,i(a, b, d) is u−12

i ∆4,i where ui is given in the table below.

v2(a) Additional conditions (u1, u2, u3, u4)
≥ 8 bd ≡ 3 mod 4 (8, 4, 8, 16)

bd ̸≡ 3 mod 4 (4, 2, 4, 8)
6, 7 (4, 2, 4, 8)
5 d is even (4, 2, 4, 8)

d is odd (4, 2, 4, 4)
4 v2(a + 16b) ≥ 8 bd ≡ 1 mod 4 (8, 4, 16, 8)

bd ̸≡ 1 mod 4 (8, 4, 8, 4)
v2(a + 16b) < 8 d is even (8, 4, 8, 4)

d odd, v2((a + 16b)2 − 256ab) ≥ 12 (8, 4, 8, 4)
d odd, v2((a + 16b)2 − 256ab) < 12 (8, 4, 4, 4)

3 d is even (4, 2, 4, 4)
d is odd (2, 2, 2, 2)

2 (2, 2, 2, 2)
1 d is even (2, 2, 2, 2)

d is odd (1, 1, 1, 1)
0 a ≡ 1 mod 4 (2, 2, 2, 2)

a ̸≡ 1 mod 4 (1, 1, 1, 1)

Figure: F4,3(16, −17, −5)

Example

Consider F4,i(a, b, d) where (a, b, d) = (16, −17, −5), then

F4,1(16, −17, −5) : y2 = x3 − 1440x2 + 108800x

Sig(E) = (212 · 3 · 52 · 7 · 13, 218 · 34 · 54 · 11, 236 · 56 · 172)

Then
v2(a) = 4, v2(a + 16b) = v2(16 + 16(−17)) = v2(16(1 + (−17)) = 8

and
bd ≡ 17 · 4 mod 4 ≡ 1 mod 4

By table, we have (u1, u2, u3, u4) = (8, 4, 16, 8). As a consequence, we
have that

∆min
1 = 8−12(236 · 56 · 172) = 56 · 172

∆min
2 = 4−12(−1 · 224 · 56 · 174) = −1 · 56 · 174

∆min
3 = 16−12(248 · 56 · 17) = 56 · 17

∆min
4 = 8−12(236 · 56 · 17) = 56 · 17

Theorem 2 (A., B., N., 2023)

Let a, b, d ∈ Z with gcd(a, b) = 1 and d squarefree. If F4,i(a, b, d) is an
elliptic curve, then F4,i has additive reduction at a prime p if and only if
p is listed in the table below and the corresponding conditions on a, b, d
are satisfied.

p Conditions
≥ 2 vp(d) = 1
2 v2(a) ≥ 8 bd ̸≡ 3 mod 4

5 ≤ v2(a) ≤ 7
v2(a) = 4 v2(a + 16b) ≤ 7

bd ̸≡ 1 mod 4
1 ≤ v2(a) ≤ 3

v2(a) = 0 a ̸≡ 1 mod 4

Corollary

Let a, b, d ∈ Z with gcd(a, b) = 1 and d squarefree. If Fn,i(a, b, d) is an
elliptic curve, then Fn,i is semistable if and only if |d| = 1 and either (i)
v2(a) ≥ 8 with bd ≡ 3 mod 4, (ii) v2(a) = 8 with v2(a + 16b) ≥ 8 and
bd ≡ 1 mod 4, or (iii) a ≡ 1 mod 4.

Example

Let E = F4,1(16, −17, −5). From the table above, we can determine
that E has additive reduction at 5 and semistable reduction at all other
primes.

Future Work
This project focused on elliptic curves with isogeny class degree equal to 4,
and ongoing work aims to determine the minimal discriminants and primes
of additive reduction for elliptic curves with isogeny class degree n > 1.
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